Numerical Optimization and the
Toolkit for Advanced Optimization

Jason Sarich, Todd Munson, Jorge Moré

Mathematics and Computer Science Division,
Argonne National Laboratory

August 19, 2009

Part |

Nonlinear Optimization

Nonlinear Optimization

e Unconstrained Optimization
e Bound-constrained Optimization

e General Constrained Optimization

Nonlinear Optimization

Unconstrained Optimization Problem

f:RYN =R
min f(z)

zeRN

Nonlinear Optimization

Bound-constrained Optimization Problem

min f(zx) (objective function)

subject to x; <z <=z, (bounds)

Nonlinear Optimization

Constrained Optimization Problem

min f(z) (objective function)

subject to ¢; < c¢(x) < ¢, (constraints)

Note: TAO is not able to solve constrained optimization problems
directly.

Part [l

Algorithms

L
Algorithms

Nonlinear optimization algorithms are iterative processes. In many cases,
each iteration involve calculating a 'search direction’, then function values
along that direction are calculated until certain conditions are met.

e Newton's Method
e Quasi-Newton Methods
e Conjugate Gradient

L
Algorithms

Newton's Method

Step 0 Choose initial vector x
Step 1 Compute gradient V f(z;) and Hessian V2 f(xy)
Step 2 Calculate the direction dj41 by solving the system:

V2 f (@) dpr1 = =V f k)

Step 3 Apply line search algorithm to obtain “acceptable” new
vector:
Tpy1 = Tk + Tdpy1

Return to Step 1

L
Algorithms

Problems with Newton's Method

e Hessian must be derived, computed, and stored

e Linear solve must be performed on Hessian

L
Algorithms

Quasi-Newton Methods
Use approximate Hessian By, ~ V2 f (). Choose a formula for By, so
that:

e By relies on first derivative information only

e By can be easily stored

® Bidi+1 = —V f(zk) can be easily solved

L
Algorithms

Conjugate Gradient Algorithms

These algorithms are an extension of the conjugate gradient methods for
solving linear systems.

diy1 = =V f(xr) + Brdy

Some possible choices of 5 (g = V f(zk)):

2
FR (Hgkﬂ”) , Fletcher-Reeves
19k
PR _ A9t 9kt Z95) - pojay Riiere
[l
BIET = max {B{H, 0}, PR-plus

L
Algorithms

Derivate Free Algorithms

There are some applications for which it is not feasible to find the
derivative of the objective function. There are some algorithms available
that can solve these applications, but they can be very slow to converge.

e Pattern Searches
e Nelder-Mead Simplex
e Model-based methods

e Use finite differences

Part 1l

TAO

The process of nature by which all things change and which is to be
followed for a life of harmony

TAO

What does TAO do for you?

e Contains a library of optimization solvers for solving unconstrained,
bound-constrained, and complementarity optimization problems.
These solvers include Newton methods, Quasi-Newton methods,
conjugate gradients, derivative free, and semi-smooth methods.

e Provides C, C++, and Fortran interfaces to these libraries
o Allows for large scale, sparse objects, and parallel applications
e Uses PETSc data structures and utilities

TAO Solvers
handles bounds requires gradient requires Hessian
Imvm no yes no
nls no yes yes
ntr no yes yes
ntl no yes yes
cg no yes no
nm no no no
blmvm yes yes no
tron yes yes yes
gpcg yes yes no

TAO

Pressure in a Journal Bearing

mln{/ [y (2) [Vo (@) — wi(@)v(@)} de: U>o}

wq(&1,&) = (1+ ecos&y)?
wy(&1,62) = esiné;y
D = (0,2m) x (0,20b)

Number of active constraints depends on the choice of € in (0,1).
Nearly degenerate problem. Solution v ¢ C2.

NN
TAO

Minimal Surface with Obstacles

min /D V14| Vo(z)||?de v > v

|
www :
\\U””\HM\”\ Il il
| “H“H“\H:J”‘J“\‘\H‘\“\HU\\H
‘\H‘H“H‘{‘\H\‘\H‘

m

Number of active constraints depends on the height of the obstacle. The
solution v ¢ C'. Almost all multipliers are zero.

TAO

Parallel Performance

Processors | BLMVM | Execution | Percentage of Time
Used Iterations Time AXPY Dot FG
8 996 1083.8 31 9 60
16 991 538.2 30 10 60
32 966 267.7 29 11 60
64 993 139.5 27 13 60
128 987 72.4 25 15 60
256 996 39.2 26 18 56
512 1000 21.6 23 22 53

Table: Scalability of BLMVM on Obstacle Problem with 2,560,000 variables.

TAO

What TAO doesn't do

Application Modeling
Derivatives

Linear programming

Constrained optimization

Integer programming

Global minimization

L
TAQO Applications

Using TAO

There are two parts to solving an optimization application with TAO:

e An Application Object that contain routines to evaluate an
objective function, define constraints on the variables, and provide
derivative information.

By default, TAO uses Matrix, Vector, and KSP objects from PETSc but
can be extended to other linear algebra packages.

NS
TAO Application

4 User code @ TAO code € Interface to extemal
linear algebra tools

L
TAQO Applications

What do you need to do for the Application Object?

You need to write C, C++, or Fortran functions that:

Set the initial variable vector

Compute the objective function value at a given vector

Compute the gradient at a given vector

Compute the Hessian matrix at a given vector (for Newton methods)

Set the variable bounds (for bounded optimization)

L
TAQO Applications

Create a data structure that contains any state information, such as
parameter values or data viewers, that the evaluation routines will need.
For example:

typedef struct {
double epsilon; /* application parameter */
PetscViewer pv; /* helpful for debugging */
} UserContext;

The objective function evaluation routine should look like:

int MyFunction(TAO_APPLICATION app, Vec x,
double *fcn, void *userCtx){
UserContext *user = (UserContext *)userCtx;

L
TAQO Applications

The routines for computing the gradient and Hessians look similar:

int MyGradient(TAO_APPLICATION app, Vec x, Vec g,
void *userCtx){
UserContext *user = (UserContext *)userCtx;

}
int MyHessian(TAO_APPLICATION app, Vec x, Mat *H,
Mat *Hpre, int *flag, void *userCtx){
UserContext *user = (UserContext *)userCtx;

L
TAQO Applications

Writing the Driver

A “driver” program is used to hook up the user's application to the TAO
library. This driver performs the following steps:

e Create the TAO Solver and Application objects
e Create the variable vector and Hessian matrix
e Hook up the Application to TAO

e Solve the application

L
TAQO Applications

Create the TAO Solver and Application objects

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
UserContext user; /* user—-defined structure */
Vec X; /* solution vector x/
Mat H; /* Hessian Matrix */

PetscInitizialize(&argc,&argv,0,0);
TaoInitialize(&argc,&argv,0,0);

TaoCreate (PETSC_COMM_SELF, "tao_lmvm",&tao) ;
TaoApplicationCreate (PETSC_COMM_SELF,&app) ;

L
TAQO Applications

Create storage for the solution vector and Hessian matrix

TAO_SOLVER tao; /* TAD Optimization solver x/
TAO_APPLICATION app; /* TAO Application using PETSc */
UserContext user;/* user-defined structure */
Vec X; /* solution vector */
Mat H; /* Hessian Matrix x/

VecCreateSeq(PETSC_COMM_SELF,n,&x) ;
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H) ;

- gasomSarich

L
TAQO Applications

Hook up the application to TAO

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
UserContext user; /* user—-defined structure */
Vec X; /* solution vector x/
Mat H; /* Hessian Matrix */

user.epsilon = 0.1;

TaoAppSetInitialSolutionVec (app,x);
TaoAppSetObjectiveRoutine (app,MyFunction, (void *)&user);
TaoAppSetGradientRoutine (app,MyGradient, (void *)&user) ;
TaoAppSetHessianRoutine (app,MyHessian, (void *)&user);

L
TAQO Applications

Solve the application

TAO_SOLVER tao; /* TAO Optimization solver x/
TAO_APPLICATION app; /* TAO Application using PETSc */
UserContext user; /* user-defined structure */
Vec X; /* solution vector x/
Mat H; /* Hessian Matrix x/

TaoSolveApplication(app, tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF) ;

L
TAQO Applications

Solve a multiple processor application

The most important and difficult part of solving a multiple processor
application is writing the function, gradient, and Hessian evaluation
routines to run in parallel.

Once that is done, it is trivial to get TAO to run in parallel:

TaoCreate (PETSC_COMM_WORLD, "tao_lmvm",&tao) ;
TaoApplicationCreate (PETSC_COMM_WORLD, &app) ;
VecCreateMPI (PETSC_COMM_WORLD,n,&x) ;
MatCreateMPIAIJ(PETSC_COMM_WORLD,n,n,nz,PETSC_NULL,&H) ;

Toolkit for Advanced Optimization

You can download TAO from the webpage

The documention online includes installation instructions, a user's
manual and a man page for every TAO function.

The download includes several examples for using TAO in C and
Fortran. We will use some of these examples in the tutorial.

If you have any questions, please contact us at

	Nonlinear Optimization
	ACTS Workshop 2009

	Algorithms
	TAO

